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CHAPTER 1

Introduction

1.1 Background

Topology is a spatial mathematics also know as topological space. Topological

space is defined as a family of sets. Members of the family are considered open set

and have the closure property under any unions (finite unions, countable infinite unions

and uncountable infinite unions) and finite intersection [16].

Ideal topology is a topological space that contains the additional structure and it

is defined as ideal. Kuratowski [13] had proposed the concept of local function in

ideal topological space. Kuratowski’s concept of operators plays an important role in

defining the ideal set of topological space which has the application of localization

theory. In the set of topology is defined by Vaidynathaswamy [22]. Later, Jankovic

and JHamlett [9] studied the properties of the ideal set in the topological space and

introduced the ideal set in other topological spaces by using the a-local function to

define the Kuratowski closure operator in a new topological space.

Then in 1996, H. Maki, J. Umehara and T. Noiri [11] defined the minimal structure

and studied the properties of this structure, as m is the family of sets. And is the

subset of the power set of X , will call (X,m) as the minimal structure space only

when there is an empty set and X is a member of m.

In 1945, Vaidyanathaswamy [21] defined the local function in the ideal topological

space and studied the properties of this function. Then 2010, Khan M. and Noiri

T [12]. defined the semi-local functions in ideal topological space, and also studied

properties of such functions.

In 2014, Al-Omeri, along with team [2], has defined the a-local function in the

ideal topological space and also studied properties of a-local function.

Later in 2016, Al-Omeri, along with the team [3], defined the <a-operator in ideal

topological space and studied the properties of this operator.

Therefore, the researcher is interested in studying the a-m-local functions and the

<am-operators in minimal structure spaces, along with studying some properties related
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to the a-m-local function and the <am-operator defined above.

1.2 Objective of the research

The purposes of the research are:

1. To define and study some properties of a-m-local function in minimal structure

spaces with ideals.

2. To define and study some properties of <a-operator in minimal structure spaces

with ideals.

1.3 Research process

1. Study and research related documents, reference documents.

2. Write a thesis outline and ask the thesis advisor to check and apply for

improvement.

3. Presenting the outline to the thesis examination committee.

4. Improve, edit the layout and present to the graduate school.

5. Study thesis.

6. Present the thesis to the advisor.

7. Organize thesis books.

8. Thesis examination.

1.4 Expected results from this research

1. Define a-m-local function in minimal structure spaces with ideals.

2. Define <am-operator in minimal structure spaces with ideals.

3. Some properties of a-m-local function in minimal structure spaces with ideals.

4. Some properties of <am-operator in minimal spaces structure spaces with ideals.



 

 

 

CHAPTER 2

Preliminaries

In this chapter, we will give some definitions, notations, dealing with some preliminaries

and some useful results that will be duplicated in later chapter.

2.1 Topological Spaces

The essential properties were distilled out and the concept of a collection of open sets,

called a topology, evolved into the following definition:

Definition 2.1.1. [1] Let X be a set. A topology τ on X is a collection of subsets

of X , each called an open set, such that

1. ∅ and X are open sets.

2. The intersection of finitely many open sets is an open set.

3. The union of any collection of open sets is an open set.

The set X together with a topology τ on X is called a topological space, denote

by (X, τ).

Thus a collection of subsets of a set X is a topology on X if it includes the empty

set and X , and if finite intersections and arbitrary unions of sets in the collection are

also in the collection.

Definition 2.1.2. [1] Let X be a set and β be a collection of subsets of X . We say

β is a basis (for a topology on X) if the following statements hold:

1. For each x in X , there is a B in β such that x ∈ B.

2. If B1 and B2 are in β and x ∈ B1 ∩ B2, then there exists B3 in β such that

x ∈ B3 ⊆ B1 ∩B2.

Definition 2.1.3. [1] A subset A of topological space X is closed if the set X \A is

open.

3
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Theorem 2.1.4. [1] Let X be a topological space. The following statements about the

collection of closed sets in X hold:

1. ∅ and X are closed.

2. The intersection of any collection of closed sets is a closed set.

3. The union of finitely many closed sets is a closed set.

Definition 2.1.5. [1] Let A be a subset of a topological space X . The interior of

A, denoted Int(A), is the union of all open sets contained in A. The closure of A,

denote Cl(A), is the intersection of all closed sets containing A.

Clealy, the interior of A is open and a subset of A, and the closure of A is closed

and contain A. Thus we have the aforementioned set sandwich, with A caught between

an open set and a closed set: Int(A) ⊆ A ⊆ Cl(A).

Theorem 2.1.6. [1] Let X be a topological space and A and B be subsets of X .

1. If U is an open set in X and U ⊆ A, then U ⊆ Int(A).

2. If C is an closed set in X and A ⊆ C, then Cl(A) ⊆ C.

3. If A ⊆ B then Int(A) ⊆ Int(B).

4. If A ⊆ B then Cl(A) ⊆ Cl(B).

5. A is open if and only if A = Int(A).

6. A is closed if and only if A = Cl(A).

Theorem 2.1.7. [1] For sets A and B in a topological space X , the following

statements hold:

1. Int(X \ A) = X \ Cl(A).

2. Cl(X \ A) = X \ Int(A).

3. Int(A) ∪ Int(B) ⊆ Int(A ∪B), and in general equality does not hold.

4. Int(A) ∩ Int(B) = Int(A ∩B).
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Definition 2.1.8. [9] An ideal I on a topological space (X, τ) is a nonempty

collection of subsets of X which satisfies the following conditions:

1. A ∈ I and B ⊆ A implies B ∈ I .

2. A ∈ I and B ∈ I implies A ∪B ∈ I .

Definition 2.1.9. [19] Let X be a topological space and A be subset of X .

1. A is said to be regular open if A = Int(Cl(A)).

2. A is said to be regular closed if A = Cl(Int(A)).

2.2 Local Function

Definition 2.2.1. [9, 21] An ideal topological space is a topological space (X, τ)

with an ideal I on X and if P (X) is the set of all subsets of X , a set operator

(.)∗ : P (X) −→ P (X), called a local function of A with respect to τ and I is

defined as follows: for A ⊆ X , A∗(I , τ) = {x ∈ X : U ∩ A /∈ I , for every

U ∈ τ(x)} where τ(x) = {U ∈ τ : x ∈ U}.

Lemma 2.2.2. [21] Let (X, τ,I ) be an ideal topological space, and A,B ⊆ X . Then

the following properties hold:

1. If A ⊆ B, then A∗ ⊆ B∗.

2. If U ∈ τ , then U ∩ A∗ ⊆ (U ∩ A)∗.

3. A∗ = Cl(A∗) ⊆ Cl(A).

4. (A ∪B)∗ = A∗ ∪B∗.

5. (A ∩B)∗ ⊆ A∗ ∪B∗.

2.3 a-Local Function

Definition 2.3.1. [22] Let (X, τ) be a topological space and A ⊆ X .

1. A is called δ-open if for each x ∈ A, there exists a regular open set G such that

x ∈ G ⊆ A. The complement of δ-open is called δ-closed. The collection of all

δ-open sets in X is denoted by δO(X).
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2. A point x ∈ X is called a δ-cluster point of A if Int(Cl(U)) ∩A 6= ∅ for each

open set U containing x.

3. The set of all δ-cluster points of A is called the δ-closure of A and is denoted

by Clδ(A).

4. The set δ-interior of A is denoted by Intδ(A), Intδ(A) = ∪{U : U is a regular

open set, U ⊆ A}.

Theorem 2.3.2. [22] Let (X, τ) be a topological space and A ⊆ X . A is δ-open if

and only if Intδ(A) = A.

Definition 2.3.3. [5, 6] Let (X, τ) be a topological space and A ⊆ X .

1. A is said to be a-open if A ⊆ Int(Cl(Intδ(A))).

2. A is said to be a-closed if Cl(Int(Clδ(A))) ⊆ A.

3. The family of all a-open sets of X , denoted by τa.

4. The collection of all a-open sets containing x in X is denoted by τa(x).

5. The intersection of all a-closed sets containing A is called a-closure of A and

is denoted by aCl(A).

6. The a-interior of A, denoted by aInt(A), is defined by the union of all a-open

sets contained in A.

Definition 2.3.4. [2] Let (X, τ,I ) be an ideal topological space and A be a subset

of X . Then Aa∗(I , τ) = {x ∈ X : U ∩A /∈ I , for every U ∈ τa(x)} is called a-local

function of A with respect to I and τ . We denote simply Aa∗ for Aa∗(I , τ).

Remark 2.3.5. [2]

1. The minimal ideal is {∅} in any ideal topological space (X, τ,I ) and the

maximal ideal is P (X). It can be deduced that Aa∗({∅}) = aCl(A) 6= Cl(A)

and Aa∗(P (X)) = ∅ for every A ⊆ X .

2. If A ∈ I , then Aa∗ = ∅.



 

 

 
7

3. Neither A ⊆ Aa
∗ nor Aa∗ ⊆ A in general.

Theorem 2.3.6. [2] Let (X, τ,I ) be an ideal topological space and A,B be subsets

of X . Then for a-local functions the following properties hold:

1. τa ∩I = ∅.

2. If J ∈ I then aInt(J) = ∅.

3. For every G ∈ τa then G ⊆ Ga∗ .

4. X = Xa∗.

Theorem 2.3.7. [2] Let (X, τ,I ) be an ideal topological space and A,B subsets of

X . Then for a-local function the following properties hold:

1. (∅)a∗ = ∅.

2. If A ⊆ B, then Aa∗ ⊆ Ba∗ .

3. For another ideal I ⊆J on X , Aa∗(J , τ) ⊆ Aa
∗
(I , τ).

4. Aa∗ ⊆ aCl(A).

5. Aa∗(I , τ) = aCl(Aa
∗
) ⊆ aCl(A) (i.e Aa∗ is an a-closed subset of aCl(A)).

6. (Aa
∗
)a

∗ ⊆ Aa
∗ .

7. (A ∪B)a
∗

= Aa
∗ ∪Ba∗ .

8. Aa∗ \Ba∗ = (A \B)a
∗ \Ba∗ ⊆ (A \B)a

∗ .

9. If U ∈ τa, then U ∩ Aa∗ = U ∩ (U ∩ A)a
∗ ⊆ (U ∩ A)a

∗ .

10. If U ∈ I , then (A \ U)a
∗ ⊆ Aa

∗
= (A ∪ U)a

∗ .

11. If A ⊆ Aa
∗ , then Aa∗(I , τ) = aCl(Aa

∗
) = aCl(A).

Theorem 2.3.8. [2] Let (X, τ) be a topological space, I and J be ideals on X and

let A be a subset of X . Then the following properties hold:

1. If I ⊆J , then Aa∗(J , τ) ⊆ Aa
∗
(I , τ).
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2. If Aa∗((I ∩J ), τ) = Aa
∗
(I , τ) ∪ Aa∗(J , τ).

Lemma 2.3.9. [2] Let (X, τ,I ) be an ideal topological space. If U ∈ τa(x), then

U ∩ Aa∗ = U ∩ (U ∩ A)a
∗ ⊆ (U ∩ A)a

∗ for any subset A of X .

Definition 2.3.10. [2] Let (X, τ,I ) be an ideal topological space. Then τ is said

to be a-compatible with respect to I , denoted by I ∼a τ if and only if, for every

x ∈ A there exists U ∈ τa(x) such that U ∩ A ∈ I , then A ∈ I .

Theorem 2.3.11. [2] Let (X, τ,I ) be an ideal topological space and A a subset of

X . Then the following are equivalent:

1. I ∼a τ .

2. If a subset A of X has a cover a-open sets of whose intersection with A is in

I , then A is in I .

3. For every A ⊆ X , if A ∩ Aa∗ = ∅, A ∈ I .

4. For every A ⊆ X , A \ Aa∗ ∈ I .

5. For every A ⊆ X , if A contains no nonempty subset B with B ⊆ Ba∗ , then

A ∈ I .

Theorem 2.3.12. [2] Let (X, τ,I ) be an ideal topological space and A a subset of

X . if τ is a-compatible with I , then the following are equivalent:

1. For every A ⊆ X , if A ∩ Aa∗ = ∅ implies Aa∗ = ∅.

2. For every A ⊆ X , (A \ Aa∗)a
∗

= ∅.

3. For every A ⊆ X , (A ∩ Aa∗)a
∗

= Aa
∗ .

2.4 On <a-Operator In Ideal Topological Spaces

In this section we shall introduce the operator <a in (X, τ,I ). Kuratowski has shown

that Cl(A) = X \ Int(X \A). This relation is the motivation of defining the operator

<a. We shall also discuss the behaviour of this operator.
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Definition 2.4.1. [3] Let (X, τ,I ) be an ideal topological space. An operator

<a : P (X)→ τa is defined as follows: for every A ∈ P (X),

<a(A) = {x ∈ X : there exists Ux ∈ τa such that Ux \ A ∈ I }.

Theorem 2.4.2. [3] Let (X, τ,I ) be an ideal topological space. Then for A ∈

P (X),<a(A) = X \ (X \ A)a
∗ .

Theorem 2.4.3. [3] Let (X, τ,I ) be an ideal topological space. Then the following

properties hold:

1. If A ⊆ X , then <a(A) is a-open.

2. If A ⊆ B, then <a(A) ⊆ <a(B).

3. If A,B ∈ P (X), then <a(A ∩B) = <a(A) ∩ <a(B).

4. If U ∈ τa∗ , then U ⊆ <a(U).

5. If A ⊆ X , then <a(A) ⊆ <a(<a(A)).

6. If A ⊆ X , then <a(A) = <a(<a(A)) if and only if (X \ A)a
∗

= ((X \ A)a
∗
)a

∗ .

7. If A ∈ I , then <a(A) = X \Xa∗ .

8. If A ⊆ X , then A ∩ <a(A) = Inta
∗
(A), where Inta∗ is the interior of τa∗ .

9. If A ⊆ X, J ∈ I , then <a(A \ J) = <a(A).

10. If A ⊆ X, J ∈ I , then <a(A ∪ J) = <a(A).

11. If (A \B) ∪ (B \ A) ∈ I , then <a(A) = <a(B).

12. If A,B ∈ P (X), then <a(A ∩B) ⊆ <a(A) ∪ <a(B).

Corollary 2.4.4. [3] Let (X, τ,I ) be an ideal topological space. Then U ⊆ <a(U)

for every a-open set U .

Theorem 2.4.5. [3] Let (X, τ,I ) be an ideal topological space and A ⊆ X . Then

the following properties hold:

1. <a(A) = {x ∈ X : there exists Ux ∈ τa(x) : Ux \ A ∈ I }.
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2. <a(A) = ∪{U ∈ τa : U \ A ∈ I }.

Remark 2.4.6. [3] Let I = {∅}, then <a(A) = ∪{U ∈ τa : U \ A = ∅} = ∪{U ∈

τa : U ⊆ A} = aInt(A), for any space (X, τ).

Theorem 2.4.7. [3] Let (X, τ,I ) be an ideal topological space and A ⊆ X . Then for

any a-open set A of X , <a(A) = ∪{U ∈ τa : (U \ A) ∪ (A \ U) ∈ I }.

2.5 Minimal Structure

Definition 2.5.1. [17] Let X be a nonempty set and P (X) the power set of X . A

subfamily m of P (X) is called a minimal structure (briefly MS) on X if ∅ ∈ m

and X ∈ m.

By (X,m), we donote a nonempty set X with a minimal structure m on X and it

is called a minimal structure space. Each member of m is said to be m-open and the

complement of m-open is said to be m-closed.

Definition 2.5.2. [17] Let (X,m) be a minimal structure space and A ⊆ X , the

m-closure of A denoted by Clm(A) and the m-interior of A denoted by Intm(A),

are defined as follows:

1. Clm(A) =
⋂
{F : A ⊆ F,X \ F ∈ m}.

2. Intm(A) =
⋃
{U : U ⊆ A,U ∈ m}.

Lemma 2.5.3. [14] Let (X,m) be a minimal structure space and A,B ⊆ X , the

following properties hold:

1. Clm(X \ A) = X \ Intm(A) and Intm(X \ A) = X \ Clm(A).

2. if X \ A ∈ m, then Clm(A) = A and if A ∈ m, then Intm(A) = A.

3. Clm(∅) = ∅, Clm(X) = X , Intm(∅) = ∅ and Intm(X) = X .

4. if A ⊆ B, then Clm(A) ⊆ Clm(B) and Intm(A) ⊆ Intm(B).

5. A ⊆ Clm(A) and Intm(A) ⊆ A.

6. Clm(Clm(A)) = Clm(A) and Intm(Intm(A)) = Intm(A).
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Lemma 2.5.4. [14] Let (X,m) be a minimal structure space and A ⊆ X . Then

x ∈ Clm(A) if and only if U ∩ A 6= ∅ for every an m-open set U containing x.

Definition 2.5.5. [7] Let (X,m) be a minimal structure sapce and A ⊆ X .

1. A is called m-regular open if A = Intm(Clm(A)).

2. A is called m-regular closed if X \ A is m-regular open.

The family of all m-regular open sets of X denoted by r(m) and the family of all

m-regular closed sets of X denoted by rc(m).

Definition 2.5.6. [18] An ideal I on a minimal structure space (X,m) is a nonempty

collection of subsets of X which satisfies the following properties;

1. A ∈ I and B ⊆ A implies B ∈ I . (heredity)

2. A ∈ I and B ∈ I implies A ∪B ∈ I . (finite additivity)

The set I together with a minimal structure space (X,m) is called a minimal

structure space with an ideal, denote by (X,m,I ).



 

 

 

CHAPTER 3

a-m-Local Function and <a
m-Operator

In this section, we introduce the concepts of δ-m-open sets and a-m-open sets in

a minimal structure space with an ideal and study some fundamental properties.

Moreover, we introduced notion of a-m-local function and <am-operator in a

minimal structure space with an ideal. Some properties of their are obtained.

3.1 δ-m-open set and a-m-open set

Definition 3.1.1. Let (X,m) be a minimal structure space and A ⊆ X .

1. A is called δ-m-open if for each x ∈ A there exists an m-regular open set

G such that x ∈ G ⊆ A. The family of all δ-m-open sets of X denoted by

δOm(X).

2. The complement of δ-m-open is called δ-m-closed. The family of all δ-m-closed

sets of X denoted by δCm(X).

3. A point x ∈ X is called a δ-m-cluster point of A if U ∩ A 6= ∅ for each

m-regular open set U containing x.

4. The set of all δ-m-cluster points of A is called the δ-m-closure of A and is

denoted by Cδm(A).

5. The set δ-m-interior is denoted by Iδm(A) =
⋃
{U : U is m-regular open and

U ⊆ A}.

Theorem 3.1.2. The arbitrary union of δ-m-open sets is an δ-m-open set.

Proof. Let Bα be an δ-m-open set for all α ∈ J where J is an index set and let

x ∈
⋃
α∈J

Bα. There exists β ∈ J such that x ∈ Bβ . Since Bβ is δ-m-open, there exists

m-regular open Gβ such that x ∈ Gβ ⊆ Bβ . Then x ∈ Gβ ⊆ Bβ ⊆
⋃
α∈J

Bα. Therefore⋃
α∈J

Bα is δ-m-open.

12
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Theorem 3.1.3. Let (X,m) be a minimal structure space and A ⊆ X . Then A is

δ-m-open if and only if Iδm(A) = A.

Proof. (=⇒) Suppose that A is δ-m-open. By definition of δ-m-interior, Iδm(A) ⊆ A.

Let x ∈ A. Since A is δ-m-open, there exists m-regular open O such that

x ∈ O ⊆ A. This implies that x ∈ Iδm(A). Then A ⊆ Iδm(A). Hence A = Iδm(A).

(⇐=) It follows from Theorem 3.1.2.

Theorem 3.1.4. Let (X,m) be a minimal structure space and A,B ⊆ X . The

following property hold;

1. If A ⊆ B, then Iδm(A) ⊆ Iδm(B).

2. If A ⊆ B, then Cδm(A) ⊆ Cδm(B).

Proof. 1. Assume that A ⊆ B and x ∈ Iδm(A). Then, there exists m-regular open

G such that x ∈ G ⊆ A. Since A ⊆ B, we have x ∈ G ⊆ A ⊆ B. This implies

that x ∈ Iδm(B). Hence Iδm(A) ⊆ Iδm(B).

2. Let A ⊆ B. Assume that x /∈ Cδm(B). Then there exists m-regular open U

containing x such that U ∩B = ∅. Since A ⊆ B, we have U ∩A ⊆ U ∩B = ∅.

Thus x /∈ Cδm(A). Therefore Cδm(A) ⊆ Cδm(B).

Theorem 3.1.5. Let (X,m) be a minimal structure space and A ⊆ X . The following

property hold;

1. Cδm(A) = X \ Iδm(X \ A).

2. Iδm(A) = X \ Cδm(X \ A).

Proof. 1. We will show that Cδm(A) ⊆ X \ Iδm(X \ A). Assume that Cδm(A) *

X \ Iδm(X \ A). Then there exists x ∈ Cδm(A) such that x /∈ X \ Iδm(X \ A).

We get that x ∈ Iδm(X \ A). So there exists m-regular open G such that

x ∈ G ⊆ X \A, we get that G∩(X \A) = G. Then G∩A = (G∩(X \A))∩A =

G∩((X \A)∩A) = G∩∅ = ∅. Since x ∈ Cδm(A), G∩A 6= ∅. It is contradiction.

Thus Cδm(A) ⊆ X \ Iδm(X \ A).

Next, we will show that X \Iδm(X \A) ⊆ Cδm(A). Assume x ∈ X \Iδm(X \A)
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and x /∈ Cδm(A). Since x ∈ X \ Iδm(X \ A), then x /∈ Iδm(X \ A). Since

x /∈ Cδm(A), then x is not δ-m-cluster point of A. There exists m-regular open G

containing x such that G∩A = ∅. So x ∈ G ⊆ X\A, we get that x ∈ Iδm(X\A),

which contradicts with x /∈ Iδm(X \ A). Thus X \ Iδm(X \ A) ⊆ Cδm(A).

2. Since X \A ⊆ X , then by 1, we have Cδm(X \A) = X \ Iδm(X \ (X \A)), we

get Cδm(X \ A) = X \ Iδm(A). Therefore Iδm(A) = X \ Cδm(X \ A).

Definition 3.1.6. Let (X,m) be a minimal structure space and A ⊆ X .

1. A is called a-m-open if A ⊆ Intm(Clm(Iδm(A))). The family of all a-m-open

sets of X denoted by M a.

2. A is called a-m-closed if Clm(Intm(Cδm(A))) ⊆ A.

3. The family of all a-m-open sets containing x in X is denoted by M a(x).

Definition 3.1.7. Let (X,m) be a minimal structure space and A ⊆ X , the a-m-

closure of A denoted by aCm(A) and the a-m-interior of A denoted by aIm(A), are

defined as follows:

1. aCm(A) =
⋂
{F : X \ F ∈M a and A ⊆ F}

2. aIm(A) =
⋃
{U : U ∈M a and U ⊆ A}.

Example 3.1.8. Let X = {a, b, c, d} with a minimal structure

m = {∅, {a, b}, {b, c}, {c, d}, {a, d}, X}.

Then r(m) = {∅, {a, b}, {a, d}, {b, c}, {c, d}, X} ,

and δOm(x) = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X},

M a = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}.

In this example {a, b} , {a, d} ∈M a but {a, b}∩{a, d} = {a} /∈M a. That is, M a

doesn’t have the property that any finite intersection of a-m-open sets is a-m-open.

Theorem 3.1.9. Let (X,m) be a minimal structure space and A ⊆ X . Then x ∈

aCm(A) if and only if U ∩ A 6= ∅ for every a-m-open set U containing x.

Proof. (=⇒) Suppose that U be a-m-open containing x such that U ∩ A = ∅. So

A ⊆ X\U and X\U is a-m-closed. Since aCm(A) is the intersection of all a-m-closed
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sets containing A, then aCm(A) ⊆ X \ U . Since x /∈ X \ U , we have x /∈ aCm(A).

(⇐=) Assume that x /∈ aCm(A). Then there exists a-m-closed F such that A ⊆ F

and x /∈ F . Choose U = X \ F . Then U = X \ F is a-m-open and x ∈ X \ F = U .

Moreover, U ∩ A = (X \ A) ∩ A = ∅.

Theorem 3.1.10. Let (X,m) be a minimal structure space and A,B ⊆ X . The

following property hold;

1. If A ⊆ B, then aCm(A) ⊆ aCm(B).

2. If A ⊆ B, then aIm(A) ⊆ aIm(B).

Proof. 1. Let A ⊆ B and x /∈ aCm(B). Then there exists a-m-open U containing

x such that U ∩B = ∅. Since A ⊆ B. So U ∩ A = ∅. Hence x /∈ aCm(A).

2. Let A ⊆ B and x ∈ aIm(A). Then there exists a-m-open U such that x ∈ U ⊆ A.

Since A ⊆ B, x ∈ U ⊆ B. Therefore x ∈ aIm(B).

Proposition 3.1.11. Let (X,m) be a minimal structure space. Then ∅ ∈ M a and

X ∈M a.

Proof. Since ∅ ⊆ Intm(Clm(Iδm(∅))). Then ∅ is a-m-open, and so ∅ ∈M a.

Clearly X = Intm(Clm(X)), so X is m-regular open set. Then X be δ-m-open

too, that is Iδm(X) = X , X ⊆ Intm(Clm(Iδm(X))). Therefore X ∈M a.

Theorem 3.1.12. Let (X,m) be a minimal structure space, then the arbitrary union of

elements of M a belong to M a.

Proof. Let Vα be a-m-open for all α ∈ J and G =
⋃
α∈J

Vα. Then Vα ⊆ Intm(Clm(Iδm(Vα)))

for all α ∈ J . Since Vα ⊆ G, Iδm(Vα) ⊆ Iδm(G), and so Clm(δm(Vα)) ⊆

Clm(Iδm(G)). Then Intm(Clm(Iδm(Vα))) ⊆ Intm(Clm(Iδm(G))). This implies that

Vα ⊆ Intm(Clm(Iδm(G))) for all α ∈ J . Thus
⋃
α∈J

Vα ⊆ Intm(Clm(Iδm(G))).

Therefore G ⊆ Intm(Clm(Iδm(G))).

Lemma 3.1.13. Let (X,m) be a minimal structure space. Then the arbitrary

intersection of a-m-closed sets is an a-m-closed set.
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Proof. Let Gα be a-m-closed for all α ∈ J . Then X \ Gα is a-m-open and so⋃
α∈J

(X \Gα) is a-m-open. Since X \
⋂
α∈J

Gα =
⋃
α∈J

(X \Gα),
⋂
α∈J

Gα is a-m-closed.

Remark 3.1.14. In a minimal structure space, by Lemma 3.1.13, aCm(A) is a-m-

closed.

Theorem 3.1.15. Let (X,m) be a minimal structure space and A ⊆ X . The following

property hold;

1. aCm(aCm(A)) = aCm(A).

2. aIm(aIm(A)) = aIm(A).

Proof. 1. Clearly aCm(A) ⊆ aCm(aCm(A)). Since aCm(A) is a-m-closed, then

aCm(aCm(A)) ⊆ aCm(A). Therefore aCm(aCm(A)) = aCm(A).

2. Clearly aIm(aIm(A)) ⊆ aIm(A). Since aIm(A) is a-m-open, then aIm(A) ⊆

aIm(aIm(A)). Therefore aIm(aIm(A)) = aIm(A).

3.2 a-m-Local Function in Minimal Structure Spaces with Ideals

Let (X,m,I ) be a minimal structure space with an ideal and M a(x) = {U : x ∈

U,U ∈M a} be the family of a-m-open sets which contain a point x ∈ X .

Definition 3.2.1. Let (X,m,I ) be a minimal structure space with an ideal and

A ⊆ X . Then

Aa
∗
m (I ,m) = {x ∈ X : U ∩ A /∈ I , for every U ∈M a(x)}

is called a-m-local function of A with respect to I and m. We denote simply Aa∗m
for Aa∗m (I ,m).

Remark 3.2.2. 1. The minimal ideal is {∅} and the maximal ideal is P (X) in

any minimal structure space with an ideal (X,m,I ). It can be deduced that

Aa
∗
m ({∅},m) = aCm(A) and Aa∗m (P (X),m) = ∅ for every A ⊆ X .

2. A * Aa
∗
m and Aa∗m * A, in general.
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Example 3.2.3. Let X = {a, b, c, d} with a minimal structure

m = {∅, {a, b}, {b, c}, {c, d}, {a, d}, X} and I = {∅, {a}, {b}, {a, b}}, A = {a, b}.

Then M a = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}

and Aa∗m = ∅.

Example 3.2.4. Let X = {a, b, c, d} with a minimal structure

m = {∅, {a, b}, {b, c}, {c, d}, {a, d}, X} and I = {∅, {a}, {b}, {a, b}}, A = {c, d}.

Then M a = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}

and Aa∗m = {c, d}.

Theorem 3.2.5. Let (X,m,I ) be a minimal structure space with ideal and A,B ⊆ X .

The following properties hold;

1. (∅)a∗m = ∅.

2. If A ⊆ B, then Aa∗m ⊆ Ba∗
m .

3. For another ideal J on X such that I ⊆J then Aa∗m (J ,m) ⊆ Aa
∗
m (I ,m).

4. Aa∗m ⊆ aCm(A).

5. Aa∗m = aCm(Aa
∗
m ), (i.e., Aa∗m is a-m-closed ).

6. (Aa
∗
m )a

∗
m ⊆ Aa

∗
m .

7. Aa∗m ∪Ba∗
m ⊆ (A ∪B)a

∗
m .

8. (A ∩B)a
∗
m ⊆ Aa

∗
m ∩Ba∗

m .

9. (A \B)a
∗
m \Ba∗

m ⊆ Aa
∗
m \Ba∗

m .

10. If A ∈ I , then Aa∗m = ∅.

11. If U ∈ I , then Aa∗m = (A ∪ U)a
∗
m .

12. If U ∈ I , then Aa∗m = (A \ U)a
∗
m .

Proof. 1. Assume (∅)a∗m 6= ∅, then there exists x ∈ (∅)a∗m . Since X ∈ M a(x),

X ∩ ∅ /∈ I . It is a contradiction with X ∩ ∅ = ∅ ∈ I . Therefore (∅)a∗m = ∅.
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2. Assume that A ⊆ B. We will show that Aa∗m ⊆ Ba∗
m . Suppose that x /∈ Ba∗

m .

Then there exists U ∈ M a(x) such that U ∩ B ∈ I . From A ⊆ B and the

property of I , U ∩ A ∈ I . Therefore x /∈ Aa∗m .

3. Assume that J is ideal such that I ⊆J and x ∈ Aa∗m (J ,m), then U∩A /∈J

for every U ∈M a(x). This implies that U ∩ A /∈ I for every U ∈M a(x), so

x ∈ Aa∗m (I ,m). Hence Aa∗m (J ,m) ⊆ Aa
∗
m (I ,m).

4. Assume that x /∈ aCm(A). Then there exists a-m-closed F such that A ⊆ F and

x /∈ F . Thus x ∈ X \F , and so X \F ∈M a(x). Hence (X \F )∩A = ∅ ∈ I ,

and so x /∈ Aa∗m . This implies that Aa∗m ⊆ aCm(A).

5. It is clear that Aa∗m ⊆ aCm(Aa
∗
m ). Next, we will prove that aCm(Aa

∗
m ) ⊆ Aa

∗
m .

Let x ∈ aCm(Aa
∗
m ) and U ∈M a(x). Then Aa∗m ∩ U 6= ∅. Therefore there exists

y ∈ Aa
∗
m ∩ U , so U ∈ M a(y). Since y ∈ Aa

∗
m , A ∩ U /∈ I , and so x ∈ Aa

∗
m .

Hence we have aCm(Aa
∗
m ) ⊆ Aa

∗
m and aCm(Aa

∗
m ) = Aa

∗
m .

6. Assume that x ∈ (Aa
∗
m )a

∗
m , and U ∈ M a(x). Then Aa

∗
m ∩ U /∈ I and so

Aa
∗
m ∩ U 6= ∅. Thus there exists y ∈ Aa∗m ∩ U , and so y ∈ U ∈ M a(y). This

implies that A ∩ U /∈ I . Therefore, x ∈ Aa∗m .

7. Since A ⊆ A∪B and B ⊆ A∪B, by 2, Aa∗m ⊆ (A∪B)a
∗
m and Ba∗

m ⊆ (A∪B)a
∗
m .

So Aa∗m ∪Ba∗
m ⊆ (A ∪B)a

∗
m .

8. Since A∩B ⊆ A and A∩B ⊆ B, by 2, (A∩B)a
∗
m ⊆ Aa

∗
m and (A∩B)a

∗
m ⊆ Ba∗

m .

So (A ∩B)a
∗
m ⊆ Aa

∗
m ∩Ba∗

m .

9. Since A \B ⊆ A by 2, then (A \B)a
∗
m ⊆ Aa

∗
m . So (A \B)a

∗
m \Ba∗

m ⊆ Aa
∗
m \Ba∗

m .

10. Assume that Aa∗m 6= ∅. Then there exists x ∈ Aa
∗
m . Since X ∈ M a(x), A =

X ∩ A /∈ I .

11. Assume that U ∈ I . Since A ⊆ A ∪ U , by 2, we get Aa∗m ⊆ (A ∪ U)a
∗
m . Next,

we will prove that (A ∪ U)a
∗
m ⊆ Aa

∗
m . Suppose that x /∈ Aa∗m . Then there exists

V ∈M a(x) such that A∩V ∈ I . Since (A∪U)∩V = (A∩V )∪ (U ∩V ) ∈ I ,

then (A ∪ U) ∩ V ∈ I . Therefore x /∈ (A ∪ U)a
∗
m .
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12. Assume that U ∈ I . Since Aa
∗
m = (A ∩ X)a

∗
m = (A ∩ ((X \ U) ∪ U))a

∗
m =

((A \ U) ∪ (A ∩ U))a
∗
m and A ∩ U ⊆ U ∈ I by 11, then Aa∗m = (A \ U)a

∗
m .

Definition 3.2.6. Let (X,m,I ) be a minimal structure space with an ideal, the

closure operator of A denoted by aC∗m(A) where aC∗m(A) = A ∪ Aa∗m .

Theorem 3.2.7. Let (X,m,I ) be a minimal structure space with an ideal where

aC∗m(A) = A ∪ Aa∗m and A,B ⊆ X . Then

1. aC∗m(∅) = ∅.

2. A ⊆ aC∗m(A).

3. aC∗m(A) ∪ aC∗m(B) ⊆ aC∗m(A ∪B).

4. aC∗m(A) ⊆ aC∗m(aC∗m(A)).

Proof. 1. By Theorem 3.2.5(1), we get that aC∗m(∅) = ∅ ∪ (∅)a∗m = ∅.

2. Since A ⊆ A ∪ Aa∗m = aC∗m(A), so A ⊆ aC∗m(A).

3. aC∗m(A) ∪ aC∗m(B) = (A ∪ Aa∗m ) ∪ (B ∪ Ba∗
m ) = (A ∪ B) ∪ (Aa

∗
m ∪ Ba∗

m ) ⊆

(A ∪B) ∪ (A ∪B)a∗m = aC∗m(A ∪B)

4. aC∗m(A) = A ∪ Aa∗m . By Theorem 3.2.5(6 and 7), we get that A ∪ Aa∗m =

(A ∪ Aa∗m ) ∪ ((Aa
∗
m ) ∪ (Aa

∗
m )a

∗
m ) ⊆ (A ∪ Aa∗m ) ∪ (A ∪ Aa∗m )a

∗
m = aC∗m(A ∪ Aa∗m ).

Therefore aC∗m(A) ⊆ aC∗m(aC∗m(A)).

Lemma 3.2.8. Let (X,m,I ) be a minimal structure space with an ideal and A,B ⊆

X . Then

1. If A ⊆ B, then aC∗m(A) ⊆ aC∗m(B).

2. aC∗m(A ∩B) ⊆ aC∗m(A) ∩ aC∗m(B).

Proof. 1. Assume that A ⊆ B. By Theorem 3.2.5(2), we get that aC∗m(A) =

A ∪ Aa∗m ⊆ B ∪Ba∗
m = aC∗m(B).

2. Since A ∩B ⊆ A and A ∩B ⊆ B, by 1, we get that aC∗m(A ∩B) ⊆ aC∗m(A) ∩

aC∗m(B).
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Definition 3.2.9. Let (X,m,I ) be a minimal structure space with an ideal and

A ⊆ X . Then M a is said to be compatible with respect to I , denoted by M a ∼ I

if, for each A ⊆ X , x ∈ A there exists U ∈ M a(x) such that U ∩ A ∈ I , then

A ∈ I .

Theorem 3.2.10. Let (X,m,I ) be a minimal structure space with an ideal and A

subset of X . Then the following are equivalent:

1. M a ∼ I .

2. If a subset A of X has a cover a-m-open sets of whose intersection with A is

in I , then A is in I , in other words Aa∗m = ∅, then A ∈ I .

3. For every A ⊆ X , if A ∩ Aa∗m = ∅, A ∈ I .

4. For every A ⊆ X , A \ Aa∗m ∈ I .

5. For every A ⊆ X , if A contains no nonempty subset B with B ⊆ Ba∗
m , then

A ∈ I .

Proof. (1) =⇒ (2) The proof is obvious.

(2) =⇒ (3) Let A ⊆ X and x ∈ A. Then x /∈ Aa∗m and there exists U ∈ M a(x)

such that U ∩ A ∈ I . Since A has a cover A ⊆
⋃
{U ∈ M a(x) : x ∈ A}, by 2,

A ∈ I .

(3) =⇒ (4) Let A ⊆ X . We observe that A \ Aa∗m ⊆ A and by Theorem 3.2.5(2)

(A \ Aa∗m )a
∗
m ⊆ Aa

∗
m . So (A \ Aa∗m )a

∗
m ∩ (A \ Aa∗m ) ⊆ (A \ Aa∗m ) ∩ Aa∗m = ∅. Then

(A \ Aa∗m )a
∗
m ∩ (A \ Aa∗m ) = ∅. By 3, then A \ Aa∗m ∈ I .

(4) =⇒ (5) Let A ⊆ X . By 4, then A \ Aa∗m ∈ I . We observe that A =

(A \Aa∗m )∪ (A∩Aa∗m ) and by Theorem 3.2.5(11), then Aa∗m = (A∩Aa∗m )a
∗
m . So, we get

that Aa∗m ∩ A = (A ∩ Aa∗m )a
∗
m ∩ A, then Aa∗m ∩ A ⊆ (A ∩ Aa∗m )a

∗
m . Since (A ∩ Aa∗m ) ⊆ A,

and by assumption A ∩ Aa∗m = ∅, then A contains no nonempty subset. Therefore

A \ Aa∗m = A, by 4, then A ∈ I .

(5) =⇒ (1) Let A ⊆ X . Assume that for every x ∈ A, there exists U ∈ M a(x)

such that U ∩ A ∈ I . Then A ∩ Aa∗m = ∅. Since by Theorem 3.2.5(2), we get that

(A \ Aa∗m )a
∗
m ⊆ Aa

∗
m , then (A \ Aa∗m )a

∗
m ∩ (A \ Aa∗m ) ⊆ (A \ Aa∗m ) ∩ Aa∗m = ∅. Next,
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we will show that A \ Aa∗m contains no nonempty subset B with B ⊂ Ba∗
m . Suppose

that B ⊆ A \ Aa∗m such that B ⊆ Ba∗
m and B 6= ∅. Since B ⊆ A \ Aa∗m , then

Ba∗
m ⊆ (A \ Aa∗m )a

∗
m . Thus B = B ∩ Ba∗

m ⊆ (A \ Aa∗m ) ∩ (A ∩ Aa∗m )a
∗
m = ∅. This is a

contradiction. By 5, A \Aa∗m ∈ I and Hence A = A∩ (X \Aa∗m ) = A \Aa∗m ∈ I .

Theorem 3.2.11. Let (X,m,I ) be a minimal structure space with an ideal and let

(A ∩ Aa∗m )a
∗
m = Aa

∗
m for all A ⊆ X . Then, for any A ⊆ X , A ∩ Aa∗m = ∅ implies that

Aa
∗
m = ∅.

Proof. Let A ⊆ X be such that A ∩ Aa∗m = ∅. By using the assumption, we have

Aa
∗
m = (A ∩ Aa∗m )a

∗
m = (∅)a∗m = ∅.

Theorem 3.2.12. Let (X,m,I ) be a minimal structure space with an ideal, then the

following properties are equivalent:

1. M a ∩I = {∅}.

2. If J ∈ I , then aIm(J) = ∅.

3. X = Xa∗
m .

Proof. (1) =⇒ (2) Let M a ∩I = {∅} and J ∈ I . Suppose that x ∈ aIm(J). Then

there exists U ∈M a such that x ∈ U ⊆ J . Since J ∈ I and hence ∅ 6= {x} ⊆ U ∈

M a ∩I . This is a contradiction that M a ∩I = {∅}. Therefore aIm(J) = ∅.

(2) =⇒ (3) Clearly Xa∗
m ⊆ X .

Suppose x ∈ X and x /∈ Xa∗
m . Then, there exists U ∈M a(x) such that U∩X ∈ I .

Thus U ∈ I . Since U ∈ I and U ∈ M a(x), by 2, U = aIm(U) = ∅. This is a

contradiction, then X ⊆ Xa∗
m . Therefore X = Xa∗

m .

(3) =⇒ (1) Assume M a ∩I 6= {∅}. Then U ∈M a and U ∈ I such that U 6= ∅.

Then there exists x ∈ U ⊆ X . Since X = Xa∗
m = {x ∈ X : V ∩ X /∈ I for every

V ∈M a(x)}. Then U = U ∩X /∈ I . Contradiction. Therefore M a ∩I = {∅}.

3.3 On <am-Operator In Minimal Structure Spaces with Ideals

In section, we shall introduce the operator <am in (X,m,I ). We shall discuss the

behavior of this operator.



 

 

 
22

Definition 3.3.1. Let (X,m,I ) be a minimal structure with an ideal. An operator

<am : P (X) −→ P (X) is defined as follows: for every A ∈ P (X),

<am(A) = {x ∈ X : there exists U ∈M a(x) such that U \ A ∈ I }.

Theorem 3.3.2. Let (X,m,I ) be a minimal structure space with an ideal and A ∈

P (X), then <am(A) = X \ (X \ A)a
∗
m .

Proof. Let x ∈ <am(A), then there exists an a-m-open set U containing x such that

U \A ∈ I . Thus U ∩ (X \A) ∈ I . So x /∈ (X \A)a
∗
m and hence x ∈ X \ (X \A)a

∗
m .

Therefore <am(A) ⊆ X \ (X \ A)a
∗
m .

For the reverse inclusion, consider x ∈ X \ (X \ A)a
∗
m . Then x /∈ (X \ A)a

∗
m . Thus

there exists an a-m-open set U containing x such that U ∩ (X \A) ∈ I . This implies

that U \ A ∈ I . Hence x ∈ <am(A). So X \ (X \ A)a
∗
m ⊆ <am(A).

Therefore <am(A) = X \ (X \ A)a
∗
m .

Example 3.3.3. Let X = {a, b, c, d} with a minimal structure

m = {∅, {a, b}, {b, c}, {c, d}, {a, d}, X} and I = {∅, {a}, {b}, {a, b}}, A = {a, b}.

Then M a = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}

and <am(A) = {a, b}.

Theorem 3.3.4. Let (X,m,I ) be a minimal structure space with an ideal. Then the

following properties hold;

1. If A ⊆ X , then <am(A) is a-m-open.

2. If A ⊆ B, then <am(A) ⊆ <am(B).

3. If A,B ⊆ X , then <am(A ∩B) ⊆ <am(A) ∩ <am(B).

4. If A,B ⊆ X , then <am(A) ∪ <am(B) ⊆ <am(A ∪B).

5. If U ∈M a , then U ⊆ <am(U).

6. If A ⊆ X , then <am(A) ⊆ <am(<am(A)).

7. If A ⊆ X , U ∈ I , then <am(A \ U) = <am(A).

8. If A ⊆ X , U ∈ I , then <am(A ∪ U) = <am(A).
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9. If A ⊆ X , then <am(A) = <am(<am(A)) if and only if (X \A)a
∗
m = ((X \A)a

∗
m )a

∗
m .

10. If (A \B) ∪ (B \ A) ∈ I , then <am(A) = <am(B).

11. If A ∈ I , then <am(A) = X \Xa∗
m .

Proof. 1. Let A ⊆ X , we know that <am(A) = X \ (X \ A)a
∗
m and (X \ A)a

∗
m is

a-m-closed. Therefore <am(A) is a-m-open.

2. Let A ⊆ B, then X\B ⊆ X\A. By Theorem 3.2.5(2), then (X\B)a
∗
m ⊆ (X\A)a

∗
m

and hence X \ (X \ A)a
∗
m ⊆ X \ (X \B)a

∗
m . Therefore <am(A) ⊆ <am(B).

3. Let A,B ⊆ X , then A ∩B ⊆ A and A ∩B ⊆ B. So <am(A ∩B) ⊆ <am(A) and

<am(A ∩B) ⊆ <am(B). Therefore <am(A ∩B) ⊆ <am(A) ∩ <am(B).

4. Let A,B ⊆ X , hence A ⊆ A ∪ B and B ⊆ A ∪ B. So <am(A) ⊆ <am(A ∪ B)

and <am(B) ⊆ <am(A ∪B). Therefore <am(A) ∪ <am(B) ⊆ <am(A ∪B).

5. Assume that U ∈ M a. Then X \ U is a-m-closed. By Theorem 3.2.5(4.), we

get that (X \ U)a
∗
m ⊆ aCm(X \ U) = X \ U . Therefore U = X \ (X \ U) ⊆

X \ (X \ U)a
∗
m = <am(U).

6. Let A ⊆ X . By 1, we get that <am(A) is a-m-open. By 5, we get that

<am(A) ⊆ <am(<am(A)).

7. Let A ⊆ X , U ∈ I . By Theorem 3.2.5(11), we have <am(A\U) = X \(X \(A\

U))a
∗
m = X \ ((X \A)∪U)a

∗
m = X \ (X \A)a

∗
m . Therefore <am(A \U) = <am(A).

8. Let A ⊆ X , U ∈ I . By Theorem 3.2.5(12), we have <am(A ∪ U) = X \ (X \

(A ∪ U))a
∗
m = X \ ((X \ A) \ U)a

∗
m = X \ (X \ A)a

∗
m = <am(A).

9. Let A ⊆ X , this follows from the facts;

i) <am(A) = X \ (X \ A)a
∗
m and

ii) <am(<am(A)) = X \ [X \ (X \ (X \ A)a
∗
m )]a

∗
m = X \ ((X \ A)a

∗
m )a

∗
m ,

therefore <am(A) = <am(<am(A)) if and only if (X \ A)a
∗
m = ((X \ A)a

∗
m )a

∗
m .

10. Let (A \ B) ∪ (B \ A) ∈ I and A \ B = J , B \ A = K. So J,K ∈ I by

heredity. We observe that B = (A \ (A \ B)) ∪ (B \ A) = (A \ J) ∪K. Thus

<am(A) = <am(A \ J) = <am((A \ J) ∪K) = <am(B).
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11. Let A ∈ I . By Theorem 3.2.5(12), we get that <am(A) = X \ (X \ A)a
∗
m =

X \Xa∗
m .

Theorem 3.3.5. Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X .

Then <am(A) =
⋃
{U ∈M a : U \ A ∈ I }.

Proof. Let H(A) =
⋃
{U ∈M a : U \A ∈ I }. We will to show that H(A) = <am(A).

Assume that x ∈ H(A) . Then there exists U ∈ M a(x) such that U \ A ∈ I . By

definition of <am-operator, x ∈ <am(A). Let x ∈ <am(A), then there exists U ∈M a(x)

such that U \ A ∈ I . Since U ∈M a(x) ⊆M a, then <am(A) ⊆ H(A).

Remark 3.3.6. Let I = {∅}. By Theorem 3.3.5, we get that <am(A) =
⋃
{U ∈M a :

U \ A ∈ {∅}} =
⋃
{U ∈M a : U ⊆ A} = aIm(A), for any space (X,m).

Theorem 3.3.7. Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X .

Then for any a-m-open set A of X , <am(A) = ∪{U ∈M : (U \ A) ∪ (A \ U) ∈ I }.

Proof. (=⇒) Let H(A) =
⋃
{U ∈M a : (U \A)∪ (A\U) ∈ I }. Since I is heredity,

it is obvious that H(A) =
⋃
{U ∈ M a : (U \ A) ∪ (A \ U) ∈ I } ⊆

⋃
{U ∈ M a :

U \ A ∈ I } = <am(A) for every A ⊆ X .

(⇐=) Let x ∈ <am(A), then there exists U ∈ M a(x) such that U \ A ∈ I . Let

V = U ∪ A ∈ M a, then (V \ A) ∪ (A \ V ) = U \ A ∈ I and x ∈ V ∈ M a. Thus

x ∈ H(A).

Theorem 3.3.8. Let (X,m,I ) be a minimal structure space an with ideal. If M a ∼

I , then <am(A) \ A ∈ I , for every A ⊆ X .

Proof. Assume that M a ∼ I and A ⊆ X . If <am(A) \ A = ∅, then <am \ A ∈ I .

Assume that <am(A)\A 6= ∅, say x ∈ <am(A)\A, x ∈ X\(X\A)a
∗
m , then x /∈ (X\A)a

∗
m .

Then there exists U ∈ M a(x) such that U \ A = U ∩ (X \ A) ∈ I . We get that

x ∈ U \ A. Then (U \ A) ∩ (<am(A) \ A) ∈ I . So U ∩ (<am(A) \ A) ∈ I . Therefore

<am(A) \ A ∈ I .

Proposition 3.3.9. Let (X,m,I ) be a minimal structure space with an ideal, M a ∼ I

and A ⊆ X . If N is a nonempty a-m-open subset of Aa∗m ∩ <am(A), then N \ A ∈ I

and N ∩ A /∈ I .
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Proof. Assume that N ⊆ Aa
∗
m ∩ <am(A) such that N ∈ M a and N 6= ∅. Since

N ⊆ <am(A), then N \A ⊆ <am(A) \A. By Theorem 3.3.8 and heredity of I , we get

that N \A ∈ I . Since N ∈M a \ {∅}, N ⊆ Aa
∗
m and Aa∗m = {x ∈ X : U ∩A /∈ I for

every U ∈M a(x)}. Therefore N ∩ A /∈ I .

Corollary 3.3.10. Let (X,m,I ) be a minimal structure space with an ideal and

A ⊆ X . If M a ∼ I , then <am(<am(A)) = <am(A).

Proof. Assume M a ∼ I and A ⊆ X . We want to show that <am(<am(A)) = <am(A).

Clearly <am(A) ⊆ <am(<am(A)).

Since

<am(A) ⊆ <am(A) ∪ A

= (<am(A) ∪ A) ∩ (A ∪ (X \ A))

= A ∪ (<am(A) ∩ (X \ A))

= A ∪ (<am(A) \ A),

then <am(<am(A)) ⊆ <am(A∪(<am(A)\A)) = <am(A). ( by Theorem 3.3.8 and 3.3.4(8)).

Therefore <am(<am(A)) = <am(A).

Theorem 3.3.11. Let (X,m,I ) be a minimal structure space with an ideal and

M a ∼ I . Then <am(A) =
⋃
{<am(U) : U ∈M a,<am(U) \ A ∈ I }.

Proof. Let H(A) =
⋃
{<am(U) : U ∈M a,<am(U) \ A ∈ I }.

(=⇒) Let x ∈ H(A). Then there exists x ∈ <am(U) such that U ∈ M a and

<am(U) \ A ∈ I . By Theorem 3.3.4(1), we have <am(U) ∈ M a(x). So x ∈ <am(A).

Therefore H(A) ⊆ <am(A).

(⇐=) Let x ∈ <am(A). Then there exists U ∈M a(x) such that U \ A ∈ I .

Since

<am(U) ⊆ <am(U) ∪ (U ∩ (X \ A))

and

X \ A ⊆ (X \ U) ∪ (X \ A)
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= X ∩ ((X \ U) ∪ (X \ A))

= ((X \ U) ∪ U) ∩ ((X \ U) ∪ (X \ A))

= (X \ U) ∪ (U ∩ (X \ A)),

then

<am(U) \ A = <am(U) ∩ (X \ A)

⊆
(
<am(U) ∪ (U ∩ (X \ A))

)
∩
(

(X \ U) ∪ (U ∩ (X \ A))
)

= (<am(U) ∩ (X \ U)) ∪ (U ∩ (X \ A))

= (<am(U) \ U) ∪ (U \ A).

By Theorem 3.3.8, <am(U) \U ∈ I and hence U \A ∈ I . Therefore (<am(U) \U)∪

(U \A) ∈ I by property of I . Then <am(U)\A ∈ I . Since x ∈ U and U ⊆ <am(U),

then x ∈ <am(U). Then x ∈ H(A). Therefore <am(A) ⊆ H(A).

Definition 3.3.12. Let (X,m,I ) be a minimal structure space with an ideal and

A,B ⊆ X . We define A
⊙

B if (A \B) ∪ (B \ A) ∈ I .

Theorem 3.3.13. Let (X,m,I ) be a minimal structure space with an ideal and

A,B ⊆ X . Then
⊙

is an equivalence relation.

Proof. I. Since A \ A = ∅ ∈ I , then (A \ A) ∪ (A \ A) ∈ I . Therefore A
⊙

A.

II. Assume A
⊙

B, then (A \ B) ∪ (B \ A) ∈ I . Since (A \ B) ∪ (B \ A) =

(B \ A) ∪ (A \B) ∈ I , then B
⊙

A.

III. Assume A
⊙

B and B
⊙

C, then (A\B)∪(B\A) ∈ I and (B\C)∪(C\B) ∈

I . So (A \B) ∪ (B \ C) ∪ (B \ A) ∪ (C \B) ∈ I by property of I .

Since

A \ C = A ∩ (X \ C)

⊆
(
A ∪ (B ∩ (X \ C))

)
∩
(

(X \B) ∪ (B ∩ (X \ C))
)

= (A ∩ (X \B)) ∪ (B ∩ (X \ C))

= (A \B) ∪ (B \ C)
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and

C \ A = C ∩ (X \ A)

⊆
(
C ∪ (B ∩ (X \ A))

)
∩ ((B ∩ (X \ A)) ∪ (X \B))

= (B ∩ (X \ A)) ∪ (C ∩ (X \B))

= (B \ A) ∪ (C \B),

then (A \ C) ∪ (C \ A) ⊆ ((A \B) ∪ (B \ C)) ∪ ((B \ A) ∪ (C \B)) ∈ I .

So (A \ C) ∪ (C \ A) ∈ I by additive of I . Therefore A
⊙

C.

From I, II and III, then
⊙

is an equivalent relation.

Theorem 3.3.14. Let (X,m,I ) be a minimal structure space with an ideal and

A,B ⊆ X . If A
⊙

B then <am(A) = <am(B).

Proof. Assume A
⊙

B, then (A \ B) ∪ (B \ A) ∈ I . By Theorem 3.3.4(10), then

<am(A) = <am(B).

Theorem 3.3.15. Let (X,m,I ) be a minimal structure space with an ideal with

M a ∼ I . If U, V ∈M a and <am(U) = <am(V ) then U
⊙

V .

Proof. Since U ∈M a and Theorem 3.3.4(5) U ⊆ <am(U) and hence U \V ⊆ <am(U)\

V = <am(V ) \ V ∈ I by Theorem 3.3.8 and 3.3.4(10). Then U \ V ∈ I . Similarly

V \U ⊆ <am(V ) \U = <am(U) \U ∈ I . So V \U ∈ I . Then (U \V )∪ (V \U) ∈ I

by additive of I . Hence U
⊙

V .

Theorem 3.3.16. Let (X,m,I ) be a minimal structure space with an ideal with

M a ∼ I . If A,B ∈ B, and <am(A) = <am(B) then A
⊙

B, where B = {A ⊆ X :

there exists U ∈M a such that A
⊙

U}

Proof. Assume A,B ∈ B, then there exists U, V ∈M a such that A
⊙

U and B
⊙

V .

By Theorem 3.3.14 <am(A) = <am(U) and <am(B) = <am(V ). Since <am(A) = <am(B),

then <am(U) = <am(V ). By Theorem 3.3.16, we get that U
⊙

V . Therefore A
⊙

B

by transitivity of
⊙

.

Proposition 3.3.17. Let (X,m,I ) be a minimal structure space with an ideal. Then

the following properties hold:
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1. If B ∈ B \I , then there exists A ∈M a \ {∅} such that B
⊙

A.

2. If M a ∩I = {∅}, then B ∈ B \I if and only if there exists A ∈M a \ {∅}

such that B
⊙

A.

Proof. 1. Assume B ∈ B \ I , then B ∈ B and B /∈ I . So, there exists

A ∈M a \ {∅} such that (B \ A) ∪ (A \B) ∈ I . Therefore B
⊙

A.

2. Let M a∩I = {∅}. (=⇒) Assume B ∈ B \I , by 1 then there exists A ∈M a

such that B
⊙

A.

(⇐=) Assume that there exists A ∈ M a \ {∅} such that B
⊙

A. Then (B \

A) ∪ (A \ B) ∈ I . So B ∈ B. Next, we want to show that B /∈ I . Assume

B ∈ I . Let J = B \ A and K = A \B.

Since

B \ J = (B \ (B \ A))

=
(
B ∩ (X \ (B ∩ (X \ A)))

)
=
(
B ∩ ((X \B) ∪ A))

)
= (B ∩ (X \B)) ∪ (B ∩ A)

= ∅ ∪ (B ∩ A)

= B ∩ A,

we get that

(B \ J) ∪K = (B ∩ A) ∪ (A \B)

= (B ∩ A) ∪ (A ∩ (X \B))

= A ∪ (B ∩ (X \B))

= A ∪ ∅

= A.

Since B \ J ⊆ B ∈ I and K = A \ B ∈ I , then A = (B \ J) ∪K ∈ I . This

is a contradiction that M a ∩I = {∅}.

Theorem 3.3.18. Let (X,m,I ) be a minimal structure space with an ideal. Then the
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following properties are equivalent:

1. M a ∩I = {∅}.

2. <am(∅) = ∅.

3. If J ∈ I , then <am(J) = ∅.

Proof. (1) =⇒ (2) Since M a ∩I = {∅}, then by Theorem 3.3.11 <am(∅) =
⋃
{U ∈

M a : U ∈ I } = ∅.

(2) =⇒ (3) Assume that J ∈ I . By Theorem 3.3.4(8) and 2, we get that

<am(J) = <am(∅ ∪ J) = <am(∅) = ∅. Therefore <am(J) = ∅.

(3) =⇒ (1) Suppose A ∈M a∩I , then A ∈ I and by 3, we get that <am(A) = ∅.

Since A ∈M a, by Theorem 3.3.4(5), we get that A ⊆ <am(A) = ∅. Hence M a∩I =

{∅}.

Definition 3.3.19. A subset A in a minimal structure space with an ideal (X,m,I )

is said to be I a
m-dense if Aa∗m = X .

Theorem 3.3.20. Let (X,m,I ) be a minimal structure space with an ideal. Then for

x ∈ X , X \ {x} is I a
m-dense if and only if <am({x}) = ∅.

Proof. (=⇒) Since X = (X \ {x})a∗m , then ∅ = X \X = X \ (X \ {x})a∗m = <am({x}).

(⇐=) Since X \ (X \ {x})a∗m = <am({x}) = ∅, then X = (X \ {x})a∗m .

3.4 a-I -open set

Definition 3.4.1. Let (X,m,I ) be a minimal structure space with an ideal and

G ⊆ X . Then, G is called an a-I -open set in X if G = ∅ or there exists a

nonempty a-m-open K such that K \ C∗m(G) ∈ I where C∗m(G) = G ∪ G∗m and

G∗m = {x ∈ X : G ∩ U /∈ I , for every U ∈ m(x)}.

Example 3.4.2. Let X = {a, b, c, d} with a minimal structure

m = {∅, {a, b}, {b, c}, {c, d}, {a, d}, X} and I = {∅, {a}, {b}, {a, b}}.

Then M a = {∅, {a, b}, {a, d}, {b, c}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}.

Since A∗m = {x ∈ X : A ∩ U /∈ I , for every U ∈ m(x)}, ∅∗m = ∅, {a}∗m = ∅,
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{b}∗m = ∅, {c}∗m = {c}, {d}∗m = {d}, {a, b}∗m = ∅, {a, c}∗m = {c}, {a, d}∗m = {d},

{b, c}∗m = {c}, {b, d}∗m = {d}, {c, d}∗m = {c, d}, {a, b, c}∗m = {c}, {a, b, d}∗m = {d},

{a, c, d}∗m = {c, d}, {b, c, d}∗m = {c, d}, X∗m = X .

Then, the class of all a-I -open sets is P (X).

Theorem 3.4.3. Let (X,m,I ) be a minimal structure space with an ideal and G ⊆ X .

For a-I -open subset Gα in X for each α ∈ Λ, then
⋃
{Gα : α ∈ Λ} is a-I -open

subset of X .

Proof. Let Gα be an a-I -open subset of X , for each α ∈ Λ.

Case I, if
⋃
{Gα;α ∈ Λ} = ∅, then

⋃
{Gα;α ∈ Λ} is a-I -open subset of X .

Case II, if
⋃
{Gα;α ∈ Λ} 6= ∅, then there exists an αi ∈ Λ such that Gαi

6= ∅.

Since Gαi
is a-I -open, then there exists a nonempty a-m-open subset K of X such

that K \C∗m(Gαi
) ∈ I . Since Gαi

⊆
⋃
{Gα;α ∈ Λ}, then C∗m(Gαi

) ⊆ C∗m(
⋃
{Gα;α ∈

Λ}. So K \ C∗m(
⋃
{Gα;α ∈ Λ}) ⊆ K \ C∗m(Gαi

). Since K \ C∗m(Gαi
) ∈ I , then

K \ C∗m(
⋃
{Gα;α ∈ Λ} ∈ I . Thus

⋃
{Gα;α ∈ Λ} is a-I -open of X .

Lemma 3.4.4. Let (X,m,I ) be a minimal structure space with an ideal. Then ∅, X

are a-I -open.

Proof. Clearly ∅ is a-I -open set.

Since C∗m(X) = X ∪X∗m = X , X is a-m-open and X \ C∗m(X) = X \X = ∅ ∈ I ,

then X is a-I -open.

Lemma 3.4.5. Every a-m-open set is a-I -open set.

Proof. Let G be a-m-open set.

Case I, G = ∅. So G is an a-I -open set.

Case II, G 6= ∅. Then C∗m(G) = G ∪G∗m. Since G ⊆ C∗m(G) and G is a-m-open,

then G \ C∗m(G) = ∅ ∈ I . Therefore G is a-I -open.

Definition 3.4.6. The class of all a-I -open sets in a minimal structure space with

an ideal (X,m,I ) is denoted by OIa(X). The a-I -interior of A is denoted by

IntaI (A) is the union of all a-I -open sets containing in A. A subset F of X is

called a-I -closed if its complement is a-I -open in X . The class of all a-I -closed
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sets in a minimal structure space with an ideal (X,m,I ) is denoted by CIa(X).

The a-I -closure of a subset A of a minimal structure with an ideal (X,m,I ) is the

intersection of all a-I -closed sets containing A. The a-I -closure of A is denoted by

ClaI (A).

Remark 3.4.7. By Lemma 3.4.5, then every a-m-closed set is an a-I -closed set.

Theorem 3.4.8. Let (X,m,I ) be a minimal structure space with an ideal and A,B ⊆

X . Then the following properties hold;

1. A ⊆ ClaI (A).

2. IntaI (A) ⊆ A.

3. If A ⊆ B, then ClaI (A) ⊆ ClaI (B).

4. If A ⊆ B, then IntaI (A) ⊆ IntaI (B)

5. ClaI (A) ⊆ aCm(A).

6. aIm(A) ⊆ IntaI (A).

Proof. 1. By definition ClaI (A), then A ⊆ ClaI (A).

2. By definition IntaI (A), then IntaI (A) ⊆ A.

3. Suppose that A ⊆ B and x /∈ ClaI (B). Then, there exists an a-I -closed set F

such that B ⊆ F and x /∈ F . It follows from A ⊆ B that x /∈ ClaI (A).

4. Let A ⊆ B, and suppose that x ∈ IntaI (A). Then , there exists an a-I -open

set U such that U ⊆ A and x ∈ U . Since A ⊆ B, we get that x ∈ IntaI (B).

5. Assume that x /∈ aCm(A). Then, there exists a-m-closed F in X such that

A ⊆ F and x /∈ F . Since every a-m-closed is a-I -closed, we get that F is

a-I -closed. Therefore x /∈ ClaI(A).

6. Assume that x ∈ aIm(A). Then, there exists U such that U ⊆ A and x ∈ U .

Since every a-m-open is a-I -open, then a-m-open U is a-I -open. Therefore

x ∈ IntaI (A).
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Theorem 3.4.9. Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X .

Then x ∈ ClaI (A) if and only if V ∩ A 6= ∅ for all V ∈ OIa(X) containing x.

Proof. (=⇒) Assume V ∩ A = ∅ for some V ∈ OIa(X) containing x. Then A ⊆

X \V . Since V is a-I -open, then X \V is a-I -closed, and not containing x. We get

that x /∈ ClaI (A). Therefore, if x ∈ ClaI (A) then V ∩ A 6= ∅ for all V ∈ OIa(X)

containing x.

(⇐=) Assume x /∈ ClaI (A). Then, there exists a-I -closed F such that A ⊆ F

and x /∈ F . Then X \ F is a-I -open and contain x. We get that (X \ F ) ∩ A = ∅.

Therefore, if V ∩ A 6= ∅ for all V ∈ OIa(X) containing x, then x ∈ ClaI (A).

Theorem 3.4.10. Let (X,m,I ) be a minimal structure space with an ideal and

A ⊆ X . Then the following properties hold;

1. ClaI (A) = X \ IntaI (X \ A).

2. IntaI (A) = X \ ClaI (X \ A).

Proof. 1. Assume that x /∈ X \ IntaI (X \ A). Then x ∈ IntaI (X \ A). So, there

exists V ∈ OIa(X) such that x ∈ V ⊆ X \ A. Then V ∩ A = ∅. By Theorem

3.4.9, we get that x /∈ ClaI (A). Therefore ClaI (A) ⊆ X \ IntaI (X \ A).

Next, we want to show that X \ IntaI (X \ A) ⊆ ClaI (A). Assume that

x /∈ ClaI (A). Then, there exists V ∈ OIa(X) containing x such that V ∩A = ∅.

So V ⊆ X \ A. Then x ∈ IntaI (X \ A). We get that x /∈ X \ IntaI (X \ A).

Then X \ IntaI (X \ A) ⊆ ClaI (A). Therefore ClaI (A) = X \ IntaI (X \ A).

2. Since X \ A ⊆ X , by 1, we get that ClaI (X \ A) = X \ IntaI (X \ (X \ A)).

Then ClaI (X \A) = X \IntaI (A). This implies that IntaI (A) = X \ClaI (X \

A).

Definition 3.4.11. A mapping f : (X,mX ,I ) −→ (Y,mY ) is said to be a-I -

continuous if for each x ∈ X and each mY -open K of Y containing f(x), there

exists G ∈ OIa(X) containing x such that f(G) ⊆ K.

Theorem 3.4.12. For a mapping f : (X,mX ,I ) −→ (Y,mY ), the following properties

are equivalent:
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1. f is a-I -continuous.

2. f−1(K) is a-I -open in X for each mY -open set K of Y .

3. f−1(F ) is a-I -closed in X for each mY -closed set F of Y .

4. f(ClaI (A)) ⊆ ClmY
(f(A)) for each subset A of X .

5. ClaI (f−1(B)) ⊆ f−1(ClmY
(B)) for each subset B of Y .

6. f−1(IntmY
(B)) ⊆ IntaI (f−1(B)) for each subset B of Y .

Proof. (1) =⇒ (2) Let K be any mY -open subset of Y and x ∈ f−1(K). Then, there

exists Gx ∈ OIa(X) containing x such that f(Gx) ⊆ K. We get that x ∈ G ⊆

f−1(f(Gx)) ⊆ f−1(K). Thus f−1(K) =
⋃

x∈f−1(K)

Gx. By Theorem 3.4.3, we get that

f−1(K) is a-I -open in X .

(2) =⇒ (3) Let F be mY -closed in Y , we get that Y \ F is mY -open in Y . By 2,

we have f−1(Y \ F ) is a-I -open in X . But f−1(Y \ F ) = X \ f−1(F ). Therefore

f−1(F ) is a-I -closed in X .

(3) =⇒ (1) Let x ∈ X and K be mY -open in Y such that f(x) ∈ K. Then Y \K is

a-I -closed. By 3, we get that f−1(Y \K) is a-I -closed. So f−1(K) = X\f−1(Y \K)

is a-I -open, setting G := f−1(K). Now, f(G) = f(f−1(K)) ⊆ K and x ∈ G.

Therefore f is a-I -continuous.

(1) =⇒ (6) Let B ⊆ Y and x ∈ f−1(IntmY
(B)). Then, there exists y ∈ IntmY

(B)

such that f(x) = y. Since y ∈ IntmY
(B), there exists mY -open G such that y ∈

G ⊆ B. Then f(x) = y ∈ G. By 1, there exists a-I -open U of X such that

x ∈ U and f(U) ⊆ G. So U ⊆ f−1(f(U)) ⊆ f−1(G) ⊆ f−1(B). This implies that

x ∈ IntaI (f−1(B)). Therefore f−1(IntmY
(B)) ⊆ IntaI (f−1(B)).

(6) =⇒ (1) Let x ∈ X , and K be mY -open in Y such that f(x) ∈ K. By 6, we

get that f−1(K) = f−1(IntmY
(K)) ⊆ IntaI (f−1(K)) ⊆ f−1(K). Then f−1(K) =

IntaI (f−1(K)). Now, G := f−1(K) is a-I -open and x ∈ f−1(K). We get that

f(G) = f(f−1(K)) ⊆ K. Therefore f is a-I -continuous.

(6) =⇒ (4) Let A ⊆ X . By 6, we get that f−1(IntmY
(Y \f(A))) ⊆ IntaI (f−1(Y \

f(A)).
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Then

X \ f−1(ClmY
(f(A))) = f−1(Y \ ClmY

(f(A)))

= f−1(IntmY
(Y \ f(A)))

⊆ IntaI (f−1(Y \ f(A))

= IntaI (X \ f−1(f(A)))

= X \ ClaI (f−1(f(A))).

So, we have ClaI (A) ⊆ ClaI (f−1(f(A))) ⊆ f−1(ClmY
(f(A)). Therefore f(ClaI (A)) ⊆

f(f−1(ClmY
(f(A))) ⊆ ClmY

(f(A)).

(4) =⇒ (5) Let B ⊆ Y . By 4, we get that f(ClaI (f−1(B)) ⊆ ClmY
(f(f−1(B)) ⊆

ClmY
(B). Therefore ClaI (f−1(B)) ⊆ f−1(f(ClaI (f−1(B))) ⊆ f−1(ClmY

(B)).

(5) =⇒ (6) Let B ⊆ Y . By 5, we get that ClaI (f−1(Y \B)) ⊆ f−1(ClmY
(Y \B)).

Then

X \ IntaI (f−1(B)) = ClaI (X \ f−1(B)

= ClaI (f−1(Y \B))

⊆ f−1(ClmY
(Y \B))

= f−1(Y \ IntmY
(B))

= X \ f−1(IntmY
(B))

Therefore f−1(IntmY
(B)) ⊆ IntaI (f−1(B)).



 

 

 

CHAPTER 4

Conclusions

The aim of this thesis is to introduce the results of properties of some sets in a minimal

structure space with an ideal. And we study some properties of δ-m-open sets, a-m-

open sets in a minimal structure space with an ideal are introduced. Moreover we

have defined a-m-local function and <am-operator in a minimal structure space with

an ideal. Some properties of their are obtained. Moreover, we introduce the notions

a-I -open sets and a-I -continuous. The results are as follows:

1) Let (X,m) be a minimal structure space and A,B ⊆ X . The following property

hold;

1.1) If A ⊆ B, then aCm(A) ⊆ aCm(B).

1.2) If A ⊆ B, then aIm(A) ⊆ aIm(B).

2) Let (X,m) be a minimal structure space and A ⊆ X . The following property

hold;

2.1) aCm(aCm(A)) = aCm(A).

2.2) aIm(aIm(A)) = aIm(A).

3) Let (X,m,I ) be a minimal structure space with an ideal and A,B ⊆ X . The

following properties hold;

3.1) (∅)a∗m = ∅.

3.2) If A ⊆ B, then Aa∗m ⊆ Ba∗
m .

3.3) For another ideal J on X such that I ⊆ J then Aa
∗
m (J ,m) ⊆

Aa
∗
m (I ,m).

3.4) Aa∗m ⊆ aCm(A).

3.5) Aa∗m = aCm(Aa
∗
m ), (i.e., Aa∗m is an a-m-closed subset).

3.6) (Aa
∗
m )a

∗
m ⊆ Aa

∗
m .
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3.7) Aa∗m ∪Ba∗
m ⊆ (A ∪B)a

∗
m .

3.8) (A ∩B)a
∗
m ⊆ Aa

∗
m ∩Ba∗

m .

3.9) (A \B)a
∗
m \Ba∗

m ⊆ Aa
∗
m \Ba∗

m .

3.10) If A ∈ I , then Aa∗m = ∅.

3.11) If U ∈ I , then Aa∗m = (A ∪ U)a
∗
m .

3.12) If U ∈ I , then Aa∗m = (A \ U)a
∗
m .

4) Let (X,m,I ) be a minimal structure space with an ideal where aC∗m(A) =

A ∪ Aa∗m and A,B ⊆ X . Then

4.1) aC∗m(∅) = ∅.

4.2) A ⊆ aC∗m(A).

4.3) aC∗m(A) ∪ aC∗m(B) ⊆ aC∗m(A ∪B).

4.4) aC∗m(A) ⊆ aC∗m(aC∗m(A)).

5) Let (X,m,I ) be a minimal structure space with an ideal and A,B ⊆ X . Then

5.1) If A ⊆ B, then aC∗m(A) ⊆ aC∗m(B).

5.2) aC∗m(A ∩B) ⊆ aC∗m(A) ∩ aC∗m(B).

6) Let (X,m,I ) be a minimal structure space with an ideal and A subset of X .

Then the following are equivalent:

6.1) M a ∼ I .

6.2) If a subset A of X has a cover a-m-open sets of whose intersection with

A is in I , then A is in I , in other words Aa∗m = ∅, then A ∈ I .

6.3) For every A ⊆ X , if A ∩ Aa∗m = ∅, A ∈ I .

6.4) For every A ⊆ X , A \ Aa∗m ∈ I .

6.5) For every A ⊆ X , if A contains no nonempty subset B with B ⊆ Ba∗
m ,

then A ∈ I .

7) Let (X,m,I ) be a minimal structure space with an ideal, then the following

properties are equivalent:
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7.1) M a ∩I = {∅}.

7.2) If J ∈ I , then aIm(J) = ∅.

7.3) X = Xa∗
m .

8) Let (X,m,I ) be a minimal structure space with an ideal and A ∈ P (X), then

<am(A) = X \ (X \ A)a
∗
m .

9) Let (X,m,I ) be a minimal structure space with an ideal. Then the following

properties hold;

9.1) If A ⊆ X , then <am(A) is a-m-open.

9.2) If A ⊆ B, then <am(A) ⊆ <am(B).

9.3) If A,B ⊆ X , then <am(A ∩B) ⊆ <am(A) ∩ <am(B).

9.4) If A,B ⊆ X , then <am(A) ∪ <am(B) ⊆ <am(A ∪B).

9.5) If U ∈M a , then U ⊆ <am(U).

9.6) If A ⊆ X , then <am(A) ⊆ <am(<am(A)).

9.7) If A ⊆ X , U ∈ I , then <am(A \ U) = <am(A).

9.8) If A ⊆ X , U ∈ I , then <am(A ∪ U) = <am(A).

9.9) If A ⊆ X , then <am(A) = <am(<am(A)) if and only if (X \ A)a
∗
m = ((X \

A)a
∗
m )a

∗
m .

9.10) If (A \B) ∪ (B \ A) ∈ I , then <am(A) = <am(B).

9.11) If A ∈ I , then <am(A) = X \Xa∗
m .

10) Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X . Then

<am(A) =
⋃
{U ∈M a : U \ A ∈ I }.

11) Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X . Then for

any a-m-open set A of X , <am(A) = ∪{U ∈M : (U \ A) ∪ (A \ U) ∈ I }.

12) Let (X,m,I ) be a minimal structure space an with ideal. If M a ∼ I , then

<am(A) \ A ∈ I , for every A ⊆ X .
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13) Let (X,m,I ) be a minimal structure space an with ideal, M a ∼ I and A ⊆ X .

If N is a nonempty a-m-open subset of Aa∗m ∩ <am(A), then N \ A ∈ I and

N ∩ A /∈ I .

14) Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X . If

M a ∼ I then, <am(<am(A)) = <am(A).

15) Let (X,m,I ) be a minimal structure space with an ideal and M a ∼ I . Then

<am(A) =
⋃
{<am(U) : U ∈M a,<am(U) \ A ∈ I }.

16) Let (X,m,I ) be a minimal structure space with an ideal. Then the following

properties are equivalent:

16.1) M a ∩I = {∅}.

16.2) <am(∅) = ∅.

16.3) If J ∈ I , then <am(J) = ∅.

17) Let (X,m,I ) be a minimal structure space with an ideal and A,B ⊆ X . Then

the following properties hold;

17.1) A ⊆ ClaI (A).

17.2) IntaI (A) ⊆ A.

17.3) If A ⊆ B, then ClaI (A) ⊆ ClaI (B).

17.4) If A ⊆ B, then IntaI (A) ⊆ IntaI (B).

17.5) ClaI (A) ⊆ aCm(A).

17.6) aIm(A) ⊆ IntaI (A).

18) Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X . Then

x ∈ ClaI (A) if and only if V ∩ A 6= ∅ for all V ∈ OIa(X) containing x.

19) Let (X,m,I ) be a minimal structure space with an ideal and A ⊆ X . Then the

following properties hold;

19.1) ClaI (A) = X \ IntaI (X \ A).

19.2) IntaI (A) = X \ ClaI (X \ A).
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20) For a mapping f : (X,mX ,I ) −→ (Y,mY ), the following properties are

equivalent:

20.1) f is a-I -continuous.

20.2) f−1(K) is a-I -open in X for each mY -open set K of Y .

20.3) f−1(F ) is a-I -closed in X for each mY -closed set F of Y .

20.4) f(ClaI (A)) ⊆ ClmY
(f(A)) for each subset A of X .

20.5) ClaI (f−1(B)) ⊆ f−1(ClmY
(B)) for each subset B of Y .

20.6) f−1(IntmY
(B)) ⊆ IntaI (f−1(B)) for each subset B of Y .
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